Detection of Oxidation Radicals of Z3-Enediol Form of 2,3-Dioxoguluno-6-lactone by Pulse Radiolysis

Kunihiko Nakata,^a Hideo Horii* ^{*b*} and Naofumi Morita^a

a Laboratory of Food Chemistry, Department of Agricultural Chemistry, College of Agriculture, and b Research Institute for Advanced Science and Technology, University of Osaka Prefecture, 1-2 Gakuen-cho, Sakai, Osaka 593, Japan

The OH adduct radicals **of** the 2,3-enediol form of **2,3-dioxoguluno-6-lactone** (2,3-End.DKGL) have been observed in aqueous solution by pulse radiolysis (the adduct radicals were converted into the one-electron oxidation radical in alkaline solutions by dehydration); the oxidation radical has also been produced by oxidation **of** 2,3-End.DKGL by the azide radical **(N₃**⁻).

L-Ascorbic acid (AsA) is easily oxidized to dehydro-L-ascorbic acid (DHA), and then hydrolysed to $2,3$ -dioxo-L-gulonic acid (DKG) in neutral and alkaline solutions. DKG can be converted into 2,3-End.DKGL and the 3,4-enediol form of **2,3-dioxoguluno-6-lactone** (3,4-End. DKGL) by enolization and subsequent cyclization of DKG in neutral solution, $1,2$ but 3,4-End.DKGL is rather unstable in aqueous solution. Both 2,3-End.DKGL and **AsA** have the 2,3-enediol group in their structures. The study of the oxidation mechanism of 2,3- End.DKGL **is** important in relation to the metabolism of AsA

in living organisms. Therefore, we are interested in studying the oxidation intermediates of 2,3-End.DKGL in order to clarify the oxidation mechanism of 'reductone' including AsA,3 adrenaline, dopamine and triose reductone **.43**

This paper deals with the oxidation of 2,3-End.DKGL in aqueous solution by the OH radical ((OH) and N_3 ⁺ using the pulse radiolysis technique. 2,3-End.DKGL was obtained by addition of sodium hydroxide to an ethanolic DHA solution and purified by diethylaminoethyl cellurofine column chromatography.⁶ The pK_a was determined to be 3.68 from the

Fig. 1 Spectra of radicals obtained from 2,3-End.DKGL by pulse radiolysis; *(a):* pH 6.25, immediately after the pulse; *(b):* pH 8.75, 0.1 ms after the pulse; 2×10^{-4} mol dm⁻³ 2,3-End.DKGL, N₂O saturated and (c) : 0.02 mol dm⁻³ NaN₃, pH 7.86, immediately after the pulse, 2×10^{-4} mol dm⁻³ 2,3-End.DKGL, N₂O saturated.

Fig. 2 Time course of the radical formation observed in pulseirradiated solutions of 2,3-End.DKGL at 490 nm; (a): pH 6.25, (b): pH 8.75, (c): pH 10.61; 2×10^{-4} mol dm⁻³ 2,3-End.DKGL, N_2O saturated; 4.1 Gy per pulse.

dependence of the absorbance at 300 and 345 nm on the pH of 2×10^{-4} mol dm⁻³ 2,3-End.DKGL solutions.

Pulses of 10 MeV electrons of ~ 0.5 µs duration (~ 10 Gy) were delivered from a linear accelerator to sample solutions. In the 'OH system, the solutions were saturated with $N₂O$ which converted the hydrated electron $[e(aq)]$ into 'OH. In the N₃' system, NaN₃ was added to N₂O saturated solutions in which 'OH reacted with the azide anion (N_3^-) to produce oxidizing N_3 . Fig. 1(*a*) shows optical absorption spectrum of the transient intermediates immediately after the pulse produced by the reactions of 2,3-End.DKGL with 'OH at pH 6.25. At pH 8.75 under the same conditions, a similar spectrum to that at pH 6.25 was also observed immediately after the pulse. Fig. $\hat{1}(b)$ shows the spectrum 0.1 ms after the pulse; the spectra in Fig. $1(a)$ and (b) are similar in shape but the absorbance is increased at pH 8.75. Fig. $1(c)$ shows the spectrum of the transient intermediates produced by the reaction of 2,3-End.DKGL with N_3 . Again the spectrum is similar in shape to Fig. $1(a)$ and (b) but the absorbance is ca. 15% greater in Fig. $1(c)$ than in Fig. $1(b)$. This indicates that some types of the OH adduct radicals could not yield the oxidation radical by dehydration. Fig. 2 shows the time profiles of absorbance at 490 nm in pulse-irradiated solutions at pH 6.25 , 8.75 and 10.61 . At pH 8.75 another transient intermediate is generated successively after the formation of the first-stage intermediate immediately after the pulse. At pH 10.61 the generation rate of the second-stage intermediate is too rapid to distinguish the two processes. These facts suggest that the OH radical reacts with 2,3-End.DKGL to form the OH adduct radicals which give the oxidation radical by dehydration in alkaline solutions. Similar phenomena have
been reported for the case of AsA.³ The AsA radical and the triose reductone radical have much smaller values of pK_a (pK_a $= -0.457$ and 1.45) than those (p $K_a = 4.3$ and 5.0) of the

Scheme 1. Proposed mechanism for the formation of radicals from 2,3-End.DKGL and H or N_3 ^{*}

original acids. This fact enables us to presume that the pK_a value of the 2,3-End.DKGL radical is smaller than that of the acid by \sim 4. Hence, the 2,3-End.DKGL radical must be in a dissociated form at neutral pH.

The rate constant for the dehydration of the OH adduct radicals by OH⁻ was found to be $k = (1.6 \pm 0.2) \times 10^4 + (6.8$ \pm 0.4) × 10⁸ [H⁺] s⁻¹ from the relation of *k vs.* concentration of OH⁻ (5.6 \times 10⁻⁶ to 4 \times 10⁻⁴ mol dm⁻³) in N₂O saturated solutions of 2×10^{-4} mol dm⁻³ 2,3-End.DKGL. On the other hand, 2,3-End.DKGL is directly oxidized by N_3 ^{*} to yield the oxidation radical. The rate constants for reactions of 2,3- End.DKGL with 'OH and N₃' were found to be (8.8 \pm 0.8) \times 10^9 dm³ mol⁻¹ s⁻¹ at pH 7.65 and (3.5 \pm 0.4) × 10⁹ dm³ mol⁻¹ s-l at pH **7.76,** by kinetic analyses of the formation of the transient intermediate at 490 nm in the range of **2** to 4 x 10^{-6} dm⁻³ mol 2,3-End.DKGL, respectively. The OH adduct radical and the oxidation radical of 2,3-End.DKGL decay by second-order kinetics with rate constants of (1.4 ± 0.1) × 10^8 dm³ mol⁻¹ s⁻¹ at pH 6.3 and (6.8 \pm 0.4) x $10⁷$ dm³ mol⁻¹ s⁻¹ at pH 7.9, above 5 Gy per pulse.

The loss of 2,3-End.DKGL for OH radical oxidation at pH 6.25 was observed to be $(3.4 \pm 0.1) \times 10^{-7}$ mol J⁻¹ by HPLC analyses after ${}^{60}Co$ y-ray irradiation. This result indicates that the transient intermediate decays by disproportionation, since the radiation chemical yield of \cdot OH is 6.3 \times 10^{-7} mol J⁻¹.⁷ A proposed mechanism for the oxidation of 2,3-End.DKGL is shown in Scheme 1.

Received, 23rd March 1993; Corn. 31016756

References

- 1 M. Takagi, N. Morita, K. Nakata, T. Matsui and **S.** Sawada, *Bioelectrochem. Bioenerg.,* 1991, **25,** 121.
- 2 K. Nakata, N. Morita, **S.** Sawada and M., Takagi, *Anal. Sci.,* 1992, **8,** 51.
- 3 M. Schoneshofer, *2. Naturforsch., Teil B.,* 1972, **27,** 649.
- 4 H. Horii, **Y.** Abe and **S.** Taniguchi, *Bull. Chem. SOC. Jpn.,* 1985, *58,* 2751.
- *5 H.* Horii, **Y.** Abe and **S.** Taniguchi, *Bull. Chem. Soc. Jpn.,* 1986, *59,* 721.
- 6 H. Tanaka and E. Kimoto, *Bull. Chem. SOC. Jpn.,* 1990,63,2569.
- 7 R. Schuler, L. K. Patterson, and E. *J.* Janata, *J. Phys. Chem.* 1980, **84,** 2088.